Session 2
Pump Selection

Mark Markham, P.E.
Gresham, Smith and Partners
September 14, 2017
Quick Refresh

- System Curves graphically show the relationship between flow rates and associated total dynamic heads (TDH)
- TDH is the amount of pressure required to push a certain flow rate through a given pipe network
- TDH is the sum of:
 - Static head loss – moving the water from one elevation to another
 - Friction head loss – dynamic losses related to flow rate, pipe diameter, pipe length, pipe roughness, fittings
Intermediate high point, 2 possible conditions:
- Pump to high point, gravity down back side (high static, low friction losses)
- Pump to discharge point, pressure entire length (low static, high friction losses)

WHICH ONE GOVERNS?
Advanced System Curves
Composite Curves

- Scenario 1 – pump to high point, then gravity flow down to discharge point
 - May have manhole at the top of the hill for free discharge and system ventilation
 - Behaves according to plan as long as the pumping rate is **less** than hydraulic capacity of gravity system

![Graph showing hydraulic gradeline, pressure flow, gravity flow, friction head, static head, and pipe length.](image-url)
Scenario 2 – pump to discharge point

- ARV/CAVV at the top of the hill for system ventilation and to prevent unintentional siphoning
- Behaves according to plan as long as the pumping rate is more than hydraulic capacity of gravity system
Advanced System Curves

Composite Curves

- Answer: Both scenarios govern, depending on flow rate
- You must plot both system curves independently, then combine into a composite curve
Advanced System Curves

Composite Curves

- **Total Dynamic Head, ft**
- **Flow Rate, gpm**

- **Design System Curves**
- **High static head, short pipe**
- **Low static head, long pipe**

- **Critical Flow Rate (Avoid)**
Advanced System Curves

Bracketing

- It is **impossible** to predict accurately the hydraulic behavior of a piping system at a given point in time.
- Therefore, we must evaluate a range of hydraulic behaviors by defining a low-head condition and a high-head condition. We can be confident that the system will behave within those boundary conditions.
Advanced System Curves
Bracketing

• Low Head Loss Curve
 • High wetwell level (at start of pumping cycle)
 • Low discharge level (if variable)
 • High Hazen-Williams C-factor (smooth pipe)
 • C = 140 is good for DIP
 • C = 160 may be appropriate for plastic pipe (caution!)

• High Head Loss Curve
 • Low wetwell level (at end of pumping cycle)
 • High discharge level (if variable)
 • Low Hazen-Williams C-factor (rough pipe)
 • C = 100 is too low for DIP
 • C = 120 is realistic
Advanced System Curves

Bracketing

<table>
<thead>
<tr>
<th>Length</th>
<th>1000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diam</td>
<td>6 in</td>
</tr>
<tr>
<td>Area</td>
<td>0.50 ft2</td>
</tr>
<tr>
<td>Static Head</td>
<td>40 ft</td>
</tr>
<tr>
<td>C-factor</td>
<td>140</td>
</tr>
</tbody>
</table>

Low Head Loss Curve

<table>
<thead>
<tr>
<th>Flow, gpm</th>
<th>Flow, ft3/sec</th>
<th>Velocity, ft/sec</th>
<th>Static Head, ft</th>
<th>Dynamic Head, ft</th>
<th>Total Dynamic Head, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>40</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>0.22</td>
<td>1.13</td>
<td>40</td>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>200</td>
<td>0.45</td>
<td>2.27</td>
<td>40</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>300</td>
<td>0.67</td>
<td>3.40</td>
<td>40</td>
<td>7</td>
<td>47</td>
</tr>
<tr>
<td>400</td>
<td>0.89</td>
<td>4.54</td>
<td>40</td>
<td>12</td>
<td>52</td>
</tr>
<tr>
<td>500</td>
<td>1.11</td>
<td>5.67</td>
<td>40</td>
<td>18</td>
<td>58</td>
</tr>
<tr>
<td>600</td>
<td>1.34</td>
<td>6.81</td>
<td>40</td>
<td>25</td>
<td>65</td>
</tr>
<tr>
<td>700</td>
<td>1.56</td>
<td>7.94</td>
<td>40</td>
<td>34</td>
<td>74</td>
</tr>
<tr>
<td>800</td>
<td>1.78</td>
<td>9.08</td>
<td>40</td>
<td>43</td>
<td>83</td>
</tr>
<tr>
<td>900</td>
<td>2.01</td>
<td>10.21</td>
<td>40</td>
<td>53</td>
<td>93</td>
</tr>
<tr>
<td>1000</td>
<td>2.23</td>
<td>11.35</td>
<td>40</td>
<td>65</td>
<td>105</td>
</tr>
</tbody>
</table>

Graph Details:
- **Static Head = 40 ft**
- **C = 140**

Legend:
- **FT** (feet)
Advanced System Curves

Bracketing

<table>
<thead>
<tr>
<th>Length</th>
<th>1000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diam</td>
<td>6 in</td>
</tr>
<tr>
<td>0.50 ft</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>0.20 ft2</td>
</tr>
<tr>
<td>Static Head</td>
<td>50 ft</td>
</tr>
<tr>
<td>C-factor</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow, gpm</th>
<th>Flow, ft³/sec</th>
<th>Velocity, ft/sec</th>
<th>Static Head, ft</th>
<th>Dynamic Head, ft</th>
<th>Total Dynamic Head, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>0.22</td>
<td>1.13</td>
<td>50</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>200</td>
<td>0.45</td>
<td>2.27</td>
<td>50</td>
<td>4</td>
<td>54</td>
</tr>
<tr>
<td>300</td>
<td>0.67</td>
<td>3.40</td>
<td>50</td>
<td>9</td>
<td>59</td>
</tr>
<tr>
<td>400</td>
<td>0.89</td>
<td>4.54</td>
<td>50</td>
<td>16</td>
<td>66</td>
</tr>
<tr>
<td>500</td>
<td>1.11</td>
<td>5.67</td>
<td>50</td>
<td>24</td>
<td>74</td>
</tr>
<tr>
<td>600</td>
<td>1.34</td>
<td>6.81</td>
<td>50</td>
<td>34</td>
<td>84</td>
</tr>
<tr>
<td>700</td>
<td>1.56</td>
<td>7.94</td>
<td>50</td>
<td>45</td>
<td>95</td>
</tr>
<tr>
<td>800</td>
<td>1.78</td>
<td>9.08</td>
<td>50</td>
<td>57</td>
<td>107</td>
</tr>
<tr>
<td>900</td>
<td>2.01</td>
<td>10.21</td>
<td>50</td>
<td>71</td>
<td>121</td>
</tr>
<tr>
<td>1000</td>
<td>2.23</td>
<td>11.35</td>
<td>50</td>
<td>86</td>
<td>136</td>
</tr>
</tbody>
</table>
Pump Curves – Centrifugal vs. PD

![Graph showing performance of Positive and Centrifugal pumps.](image)
Pump Curves (centrifugal)

- Shows relationship between head (H) and pumping rate (Q) (inverse of system curves – pumping rate increases as head decreases)

- May also show:
 - Pump efficiency as a function of Q
 - Pump horsepower (brake) as a function of Q and H
 - NPSH_R as a function of Q (upcoming session)
 - Performance changes for different impeller diameters and/or pump speeds
Pump Curves (centrifugal)

- Pump Selection Example
 - Use System Curves developed earlier
 - Pump must deliver 600 gpm
Pump Curves (centrifugal)

Q Required = 600 gpm

Expected pump performance range

76 ft TDH

65 ft TDH

UNACCEPTABLE PUMP SELECTION
Pump provides required Q only when pumping against “best case” system curve—not realistic
Pump Efficiency

- More efficient pumps draw less horsepower
- Less horsepower may mean smaller motor ($Capital)
- Less horsepower draws less electricity
- Less electricity saves money ($O&M)

HOWEVER

- Efficiency is not the be-all, end-all criteria for selection
- Overall pump RELIABILITY is more important
- Pump downtime, repairs, and PM may dwarf electricity savings over time…
Pump Reliability
Pump Reliability

Moral of the story –

- Do not select a pump based ONLY on efficiency
- Best Efficiency Point flow rate (Q_{BEP}) is often more important, even at the expense of some efficiency
Example – Pump Selection

An irrigation pumping station is being designed to transport water from a reservoir to a downstream tank, as shown below. The maximum design flow is 4,000 gpm. Select the pump, given the following:

- Suction line is 100 ft of 18” diameter ductile iron pipe
- Forcemain is 5,000 ft of 18” diameter ductile iron pipe

Suction Minor Losses
- 1 x 1.00 for entrance loss
- 2 x 0.39 for 90° bend
- 1 x 0.23 for plug valve

Discharge Minor Losses
- 6 x 0.36 for 90° bend
- 1 x 0.22 for plug valve
- 1 x 1.20 for swing check valve
- 1 x 0.50 for exit loss

El = 6122 ft
Example – Pump Selection

Determine pipeline velocities from \(v = \frac{Q}{A} \):

\[v_{12} = 7.52 \text{ ft/s}, \quad v_{18} = 6.68 \text{ ft/s} \]

Calculate minor losses

\[H_m = \Sigma K \times \frac{V^2}{2g} \]

<table>
<thead>
<tr>
<th>Suction Minor Losses</th>
<th></th>
<th>S K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss Type</td>
<td>Qty</td>
<td>K</td>
</tr>
<tr>
<td>Entrance</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>90 bend</td>
<td>2</td>
<td>0.39</td>
</tr>
<tr>
<td>Plug valve</td>
<td>1</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Total = 2.01

<table>
<thead>
<tr>
<th>Discharge Minor Losses</th>
<th></th>
<th>S K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss Type</td>
<td>Qty</td>
<td>K</td>
</tr>
<tr>
<td>90 bends</td>
<td>6</td>
<td>0.36</td>
</tr>
<tr>
<td>Plug valve</td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>Swing check valve</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>Tee (branch flow)</td>
<td>1</td>
<td>1.08</td>
</tr>
<tr>
<td>Exit loss</td>
<td>1</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Total = 5.16

Suction minor losses:

\[H_m = 2.01 \times \frac{5.04^2}{2(32.2)} = 0.8 \text{ ft} \]

Discharge minor losses:

\[H_m = 5.16 \times \frac{5.04^2}{2(32.2)} = 2.0 \text{ ft} \]
Example – Pump Selection

High Head Loss (C=120)
Pipe friction losses:

Manning Equation: \[H_f = \frac{3.022 \times V^{1.85} \times L}{C^{1.85} \times D^{1.165}} \]

Suction losses at 4,000 gpm:
\[H_f = \frac{3.022 \times 5.04^{1.85} \times 100}{120^{1.85} \times 1.5^{1.165}} = 0.5 \text{ ft} \]

Discharge losses at 4,000 gpm:
\[H_f = \frac{3.022 \times 5.04^{1.85} \times 5000}{120^{1.85} \times 1.5^{1.165}} = 22.1 \text{ ft} \]
Example – Pump Selection

High Head Loss Curve static head (lowest water level in reservoir):

\[\text{Static Head} = \text{Discharge Piping} - \text{Source Water Surface Elevation} \]

\[\text{Static Head} = 6230ft - 6127ft = 103ft \]

Total dynamic head required at 4,000 gpm (high head loss):

\[\text{TDH} = H_{\text{static}} + H_{\text{minor}} + H_{\text{friction}} \]

\[\text{TDH} = 103ft + (0.8ft + 2.0ft) + (0.5ft + 22.1ft) = 128.4ft \]
Example – Pump Selection
Pump Selection

Hydraulic Institute Standards 9.6.3 (2012)

- Preferred Operating Range (POR)
 - Generally 70% - 120% of Q_{BEP}
 - Optimum Performance
 - Minimal Vibration *(Shake)*
 - Minimal NPSH Margin *(Rattle)*
 - Maximum Service Life *(Less Roll)*
Pump Selection

Hydraulic Institute Standards 9.6.3 (2012)

- Allowable Operating Range (AOR)
 - Defined by manufacturer (not always clear on pump curve)
 - Region outside of POR
 - More Noise *(Rattle)*
 - More Vibration *(Shake and Roll)*
 - Reduced Service Life *(unhappy client)*
 - **Do not go beyond AOR limits**
POR and AOR, Illustrated

- **70% of \(Q_{BEP} \)**
- **120% of \(Q_{BEP} \)**
- **Yellow region is AOR by Mfgr**
- **BEP**

Graphical representation showing the performance characteristics of a pump or motor, with shaded regions indicating the operational ranges for POR and AOR.
Single Pump Selection

AOR/ POR ✔
Q_{BEP} ✔
Efficiency ✔
Impeller Size ✔
Horsepower ✗

2000 gpm @ 85 ft TDH

Graph showing various parameters like US GPM, NPSHR, BHP, and their relationship with TOTAL and Q_{BEP}.
Pump Arrangement

- **Series**
 - Discharge of Pump 1 connected to Suction of Pump 2
 - Same pumping rate, doubles head

- **Parallel**
 - Pumps 1 and 2 operate independently and discharge to a common manifold
 - Suctions for Pumps 1 and 2 may or may not be common
 - For identical pumps, double pumping rate @ same head
 - For dissimilar pumps, add pumping rates @ same head (if possible)
Pump Curves (centrifugal)

Series Operation
- two pumps
- Head is added by each pump, without an increase in flow

Parallel Operation
- similar pumps
- The flow of both pumps are added together to form new curve

Flowrate

Head

one pump

two pumps
Parallel Pump Selection

Triplex station (2 duty, 1 standby) must discharge peak flow rate of 660 gpm against the high and low system curves shown. Identify pump selection for the specs.

Rated Duty Point 330 gpm @ 120 ft TDH (AOR)
Parallel Pump Selection

Triplex station (2 duty, 1 standby) must discharge peak flow rate of 660 gpm against the high and low system curves shown. Identify pump selection for the specs.

Rated Duty Point 330 gpm @ 120 ft TDH (AOR)

Selection Duty Point = Q gpm @ 95 ft TDH.
Pump Selection Considerations

- Develop system hydraulics for worst/best cases – but don’t select pumps based on worst case (i.e. C ≤ 100) – use as a check
- Make preliminary selection with ‘runout’ condition within POR
- Make final selection on the basis of least NPSH_R (next session)
- Avoid speeds greater than 1200 rpm if possible
Questions/Discussion